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Several points of interpretation are reviewed bearing on the celebrated discovery by 
Darwin (1953) that the added mass for a body translating uniformly in an infinite 
expanse of perfect fluid equals the drift-volume times the density of the fluid. The 
discussion focuses on the delicate qualifications needed to secure this equality as a 
mathematical proposition. In 92 a different approach to the matter is presented, 
leading to a new fact about added mass. In  93 a model of infinity in the fluid is 
proposed which clarifies an aspect of Darwin’s original analysis. 

1. Preamble 
The added mass (or ‘hydrodynamic mass’) of a body moving in an infinite expanse 

of ideal fluid with constant density p is a tensor relating the fluid’s kinetic energy 
K to the body’s linear and angular velocities. For a rigid body, not necessarily 
axisymmetric, that moves in the z,-direction without rotating, only the first diagonal 
component of this tensor is relevant and it is defined as m, = 2K/ca = IJc ,  where 
c is the velocity of the body. The quantity I, thus related to K is the 2,-component 
of impulse, being expressible by 

I, = - p  @n,ds, (1) 
1s 

where @ is the evaluation of the velocity potential 9 at the surface S of the body 
and n, is the z,-component of the unit normal directed into the fluid (Kochin, Kibel 
& Roze 1964, p. 397). As is well known, Il cannot be identified in general with the 
total momentum M ,  of the fluid; but there are artifices, to be recalled presently, 
whereby the identity I, = M ,  may be rationalized. 

Independently of such considerations, the only immediate kinematic attribute of 
1, is the following equation which follows from Green’s theorem referred to the 
harmonic function 4. In terms of 

C, = z, dz, dz, dz,, I, 
with A denoting the space inside S occupied by the body, the equation is 

-+-+4xA, 11 dC1 = 0, 
P dt 

where A, is the coefficient of the dipole far field (i.e. in spherical polar coordinates 
4 - A, r-% cos 8 as r + a). An interpretation explained by Benjamin (1986, $2) is that 
(2) reflects the Galilean invariance of the hydrodynamic problem. By itself, however, 
(2) is not very informative. A more interesting interpretation concerns drift as studied 
by Darwin (1953), about which primarily this note is written. 

Considering the uniform motion of a body in the 2,-direction, Darwin defined the 
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drift-volume D by reference to a surface composed of fluid particles that  initially, when 
the body is far to the left, is a plane perpendicular to the x,-axis. After passage of 
the body far to  the right, this surface is displaced and together with the initial plane 
encloses the volume D. The main fact established in Darwin’s paper is that, for an 
unbounded fluid, D is the same as mJp. This famous result is not in dispute. As a 
mathematical proposition, however, it depends crucially on arbitrary assumptions 
about the ordering of infinity in the fluid which, although nicely appreciated in 
Darwin’s original treatment, have been obscured by some subsequent commentaries 
and which consequently deserve re-emphasis. 

After opening with an incisively treated example, Darwin’s account proceeded in 
steps to  the general proof, first in two and then three space dimensions, and inherent 
ambiguities associated with conditionally convergent integrals were duly exposed. 
Specifically, he showed first that  pcD equals the volume integral expressing M ,  (1953, 
equations (4.8) and (8.8)); and then he showed that M ,  becomes determinate, 
equalling I ,  as given by ( i ) ,  if and only if in the integral x, is taken to  the infinite 
limits before the cross-sectional coordinates x2 and x3 are. In other words, to  justify 
M ,  = I , ,  the expanse of fluid has to be reckoned as a circular cylinder of length L 
and radius R with its generators in the x,-direction, and with L-tm and R-too in 
this order. Thus Darwin rediscovered a curious fact that  had first been pointed out 
by Theodorsen (1941 ; see also Birkhoff 1950, chapter 5, $5). 

If the limit R-t co is taken before L + 00,  or if the fluid is assigned a rigid outer 
boundary, however remote, the conclusion is that D = - V ,  where V is the volume 
of the body. Needless to say, moreover, values for D intermediate between m,/p and 
- V are obtainable by tailoring the conditions a t  infinity. This evasiveness of a 
comprehensive definition was reconciled in a wholly satisfactory way with Darwin’s 
main result (1953, $7).  He noted that most of the drift occurs near the path of the 
body, so that the equation D = m,/p can be approximated with arbitrary closeness 
by the contribution to  D within a finite distance of the path. When the fluid is 
bounded rigidly far from the path, mass conservation requires that the total 
drift-volume is - V ;  but the necessary reflux - V -  (m,/p) is spread over a very wide 
area.t It nevertheless remains as a cardinal fact of the subject that  drift in an infinite 
fluid is not determinate without artificial specifications about infinity, just as total 
momentum is not. So, as an infinite fluid is a mathematical abstraction, secure 
deductions about its properties must depend on mathematical precision. The 
common-sense interpretation of Darwin’s result D = m,/p is plain enough; but any 
proof of it in general is an inherently more exacting matter. 

This note is prompted in part by a recent reappraisal of Darwin’s result by Yih 
(1985)’ who presented two alternative demonstrations of it. To the present author, 
however, i t  seems that neither of these demonstrations takes proper account of the 
qualifications needed for a general theorem, as were made clear in Darwin’s account. 
Both demonstrations depend on the evaluation of conditionally convergent integrals 
by choosing a particular order of integration or a particular shape of the boundary 
of the fluid a t  infinity. Although such particular choices may appear natural in some 
sense, they are difficult t o  justify rigorously. 

The following section expounds a quite different approach to Darwin’s result and 
leads to  a new interpretation of added mass. An alterna$ive rationale for removing 
the indeterminacy of integrals such as that for M ,  is also noted in $3. 

uniformly over the cross-section (see $3 below). 
t Not, however, just at the edges, as suggested by Darwin (1953, p. 350). Rather it is spread 
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FIQURE 1. Illustration of symbols used in describing paasage of solid body through plane P 
perpendicular to its path. 

2. Drift reconsidered 
The exemplary situation already specified is illustrated in figure 1. As indicated 

in the figure, let P denote any fixed plane perpendicular to xl, and A(t) denote the 
time-dependent point set P n A ,  namely the cross-section of the moving body in the 
plane P. Also let f ( t )  = P n S denote the time-dependent boundary of A(t) ,  typically 
a single closed curve in Pas A passes through but at times possibly several such curves. 
Finally, let B R ( t )  denote a bounded open subset of P\A(t) such that the inner boundary 
of BR(t) is r(t), its outer boundary is independent oft, and R is the radius of the largest 
circle contained in BR( f a). Thus, when t-+ - 00 and A(t)  is empty, B R  is a finite 
hole in P through which the body will ultimately pass during some phase of its motion, 
during which phase BR(t) = BR( - oo)\A(t) becomes an annulus surrounding the 
cross-section A( t )  of the body. 

Now, the total displacement of fluid volume through B,, say DR,f obviously 
accumulates at a varying rate equal to the volume flux through BR(t).  So, writing 
D R ( t )  for the accumulation to time t ,  implying D,(t)+O as t-+ - 00 and DR(t)+DR 

(3) 

as t+m, we have 

In this integral aq5/ax, is replaceable by -c-laq5/at, since # = #(xl-ct,x,, x3) 
everywhere in the fluid for all t. To reduce the integral further, use can be made of 
the identity 

aq5 r= dD (0 s -dx,dx,. 
dt B ~ ( t ) ~ ~ 1  

where in the contour integral @ is the evaluation of q5 on f ( t )  c S and 3,, Z3 are the 
coordinates of points in f ( t )  according to any parametric representation. In the light 
of the fact that the body's surface S is translating uniformly this contour integral 
is seen to equal another total derivative with respect to t ,  namely 

( 5 )  
d 
dt 19,,, @% ds' 

t It needs to be emphasized that D, is not identical with the contribution, respecting the area 
BR( - GO), to the total drift-volume D as defined by Darwin. But plainly the two are made arbitrarily 
close by taking R large enough. 

_- 
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where the surface Y(t) is just the part of S to the right of P at time t .  The integral 
of ( 5 )  over ( -  co, co) evidently recovers I J p  as given by (1). 

Combining this result with (3) as reduced by (4) and recalling the definition 
m, = IJc, we conclude that 

= %+- lim - lim (6) P Y c xl+w X 1 + - - m  

Here B, is written for BR( 00) = BR( - 00).  

While calling for care the interpretation of (6) is simpler than that of Darwin’s 
analytical result. On the assumption that B, is bounded, both limits on the right 
of (6) are zero if q5 has only dipole strength at infinity. If an arbitrary function of 
time alone is added to q5, having of course no dynamical significance, the two limits 
cancel. Thus the result for the volume of fluid displaced through any finite hole B ,  
in Pis 

m1 D --.  
P 

R -  (7) 

This result accords with Darwin’s for the total drift-volume D ,  which can be identified 
with limR+m D,. The remarkable implication of the present result, however, is that 
D,  is independent of the (finite) size or shape of B,, remaining the same even if B, 
is shrunk to the smallest hole in P through which the body passes. Thus the added mass 
can be interpreted as the total displacement of mass through such a hole, and the 
whole of the drift-volume is similarly accountable. 

On the other hand, let the preceding argument be retraced from the premise that 
limR+m BR(t) = P\A(t) is the cross-section through which drift is to be reckoned. The 
outcome is again (6) but with the limit R+ co preceding x, + f co on the right side. 
One then obtains 

= -v, (8) 

where the second line follows from the first by virtue of (2) and the obvious fact that 
dC,/dt = cV. As must be expected, the same final result is obtained when the fluid 
is taken to be bounded by a rigid cylindrical surface aligned with the 2,-axis. 

Although the different results (7) and (8) are exactly as encountered in Darwin’s 
analysis, the priority of (7) is perhaps more conspicuous in the present derivation. 
Reliance on the tenuous identity M ,  = cm, has been avoided. 

3. Alternative assumptions about infinity 
One artifice for making total momentum determinate has been mentioned, namely 

that originally proposed by Theodorsen and used by Darwin. A mild objection may 
be levelled against it on the grounds that it does not comply with a basic symmetry 
of the hydrodynamic problem. Properties such as the relation between added mass 
and drift are obviously invariant under rotations of the body together with its 
direction of motion, but the geometry of infinity must also be rotated ad hoe in order 
to accommodate Darwin’s line of argument. Another objection, equally marginal, is 
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that the artifice contradicts a helpful model adopted by many writers who have used 
the concepts of impulse and added mass decisively for other purposes (e.g. Saffman 
1967). The model assigns the fluid a rigid spherical boundary of indefinitely great 
radius, so that rotational symmetry is incorporated. But on this basis the correct but 
misleading conclusion is that D = MJpc = - V ,  and correspondingly for straight 
paths of a body in any other direction. Note, however, that the result (7) is unaffected. 

This model has been discussed by Benjamin & Olver (1982, §6.5), who noted an 
alternative which is in fact well suited to present purposes. To allow for a rigid outer 
boundary at r = A, the dipole far field is modified to 

$* = A ,  cost9 -+- ) c 3 (9) 

which is a harmonic function satisfying a$*/an = 0 at the boundary. Thus a uniform 
velocity 2A,/A3 in the 2,-direction is added to all parts of the fluid.? When A is made 
large enough the modification becomes insignificant at any given r;  but it ensures 
that integral properties such as Ml have definite limits as A + 00. Green’s theorem 
shows that the volume integral expressing M l / p  equals the surface integral of 
- x1 a$*/an over S, which is the same as the integral of - x1 a$/& in the limit A + 00 

and equals -dC,/dt = -cV.  The complementary surface integral over the outer 
boundary is zero because a$*/& = 0 there. The impulsive reaction of this fictitious 
boundary is given by 

m 
I, = -JrSA$*nlds = -3 $n,ds = -44x4, 
P L A  

where n, = cost9 is the 2,-component of the outward unit normal. Since Green’s 
theorem also shows that Ml = I l - I y ,  the general identity (2) thus reconfirms that 
N, = -pdC,/dt in the present case. 

The alternative model takes the fluid to be bounded by an ideally compliant, 
‘pressure-release’ surface r = A, so that the far field is modified to 

Thus IF = 0 and therefore M ,  = I ,  in this case. A uniform velocity - A,/A3 is added 
to all parts of the fluid ; and correspondingly the flow rate across the outer boundary 
is 

which Green’s theorem retraces to the equality M ,  = I , .  
Because of its rotational symmetry and presumably greater intuitive appeal, being 

based on a physical rather than abstract mathematical characterization of conditions 
at infinity, this second model has evident advantages as a support for Darwin’s 
original line of argument - and also for Yih’s. The model is just a conceptual nicety, 
however, not a radical reinforcement of the proposition D = m,/p. 

t Note that A,  is negative for a body moving in the positive x,-direction. 
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